Sunday, June 15, 2025

Lessons from a migration

Don't use low/no-code. It really is a false economy. It appeals to managers during sales pitches because it looks so simple. But your team will spend all their time and all your money debugging in a most un-ergonimc manner. And as for testing....

Azure Data Factory is a no-code solution that's great for simple DAGs. However, it is not suitable for anything more entrerprise-y. For instance, if you're copying large amounts of data from one database to another and there is a failure, there is no scope for cleaning up the data. The first you'll know of it (because nobody ever reads the logs) is when the users are complaining that the numbers coming out of their SQL queries are wrong.  

ADF doesn't even allow nested ForEach loops! It stores pipelines as JSON so watch it get confused when the pipeline itself contains JSON!

Don't give people raw SQL access. They can make profound changes and you'll have no logs and little ability to correct it.

Everything needs to have an automated audit log. There's going to be large number of questions like: "why did it do this?" It's never simply a matter of success or fail. There is huge nuance - eg, type conversion may mean what was in the source system is not exactly the same as in the destination system. Is this a pass or a fail?

Processes need orchestrating. One process reads a dataset while another deletes it/writes to it causing nondeterministic errors. You get similar issues when you issue a cancel.

Communication - docs are always changing. Be aware that most knowledge is tribal, not recorded.

Scheduling: everything was based on time. So, it's possible two daily jobs were running at the same time if the first took more than 24 hours. Data migrating from one DB to another within a cloud zone and subscription was at a rate of ~10mb/s. This meant some tables took hours. And it didn't scale. As the project progressed, more tables were to be migrated. But this caused some jobs to take days. So, the weekly transfer was still going on when people came to the office on Monday morning. Consequently, their queries were returning inconsistent results - the silent killer.

The metadata must be constrained. If it lives in a database, it must have referential integrity. This can be overlooked because it's not business data. But if you want to eliminate mysterious errors, it's essential to get this right.

Like water finding its natural level, people will naturally gravitate to the path of least resistance. As a general rule, teams do not follow best practises, naming conventions or industry standards. This is not strictly true but it's so common that you must assume for all teams that their data and code is a Rube Goldberg Machine.

Regular meetings with major stakeholders. These meeting can be brief (about 15 minutes is OK once the cadence is established) but they do need to be frequent (at least twice a week, preferably daily).

A Quick look at Quarkus


Microservice Framework

Quarkus depends a lot on SmallRye "a set of implementations of the MicroProfile specifications. We said that Quarkus is also a MicroProfile implementation, so this begs for a bit of explanation. Each SmallRye project implements one of the MicroProfile specifications" [1].

The MicroProfile specification is a set of standards for building microservice containers - for instance, handling Kubernetes health checks etc.

Native code

GraalVM has two main features: 
  • it allows polyglot development
  • it allows Ahead-of-Time (AOT) compilation.
This latter features is what Quarkus is interested in, although "Mandrel is a downstream (forked) distribution of the Oracle GraalVM CE with the main goal of providing a way to build a native executable specifically designed to support Quarkus... Mandrel focuses mainly on the native-image build tool. It doesn’t provide a full GraalVM toolset." [1]

Generate the binary with:

mvn package -Pnative

This defers to GRAALVM_HOME/bin/native-image and gcc

If we delegate to Graal, why use Quarkus at all? Well, Graal struggles with reflection. Quarkus provides shims that mean popular frameworks don't use reflection and can therefore be turned to native code.

Note that just because it produces an executable binary, the artifact still needs a garbage collector. In the output, you'll see:

Garbage collector: Serial GC (max heap size: 80% of RAM)

You don't need to use Quarkus to build native executables, though. For instance, if you tried to convert the Java port of Llama.cpp, you can build it with just make native - although note that I had to use version 24 of GraalVM as earlier versions didn't like the use of AVX (vector extensions).

Thread management

Much like Scala's Cats and ZIO, Quarkus facilitates execution engines. For instance it has a notion of blocking threads. "The @Blocking annotation on both methods tells Quarkus that the method executes a blocking operation (persist or delete) on a database, so it needs to execute on worker thread, which allows blocking." [1]
PolarisPrincipalAuthenticatorFilter

[1] Quarkus in Action (Manning)

Making ML projects more robust

The software industry has made great strides to make the engineering process more robust. Despite being an adjacent disciple, data science is still in the dark ages.

You can unit test any code so there is no excuse for not writing them. However, a lot of data science tools are not ergonomic in this regard. Notebooks are great for EDA, less so for robust software practises.

So, although they are not a replacement for automated tests, here are some tips if you're stuck in the world of notebooks.

Observability

If your platform does not support it out of the box, add it manually. For instance, in one project, there was one table that another 5 joined to at some point downstream in the pipeline. That first table was run several times with different parameters. This lead to the potential problem that the 6 tables in total may be out of synch with each other. A solution was to add a runtime date in the first table and all the other 5 preserve this value when they are generated. The Python code that then uses this data asserts that the date is consistent across all tables. 

Plot graphs of important features

In a bioinformatics project, the age of a patient was calculated in Python as the time between a patient's date of birth and the start of the observation period. This was reasonable. But several weeks later, the client asked for all of a patients medical details to be used in the study. Consequently, the observation period - calculated in SQL - effectively became a patient's first contact with the medical services. 

For most people, this happens in the first year of life. For them, their age became zero. This wasn't universally true. Imigrants would have their first medical intervention later in life. So, somebody browsing the data might think it odd there was so many infants in their sample but assume that it was just a statistical fluctuation as there were clearly 30 and 40 year olds in there too. 

However, when you plotted the age after the SQL code change, the graph of the population's age looked like this:

A bug in calculating age

Without an end-to-end suite of tests, nobody thought of updating the age calculation logic.

Sampling 

The moment you add constraints to sampled data, you must beware of some statistical oddities. 

We wanted to assign a cutoff date to the negative cohort randomly sampled from the date from the positive. Sounds straightforward, right? Well, then you have to add a constraint that the cutoff date only made sense if it came after a patient's date of birth. But this very reasonable constraint skews the data. The reason being that somebody born in 2000 can be given any cutoff date 2000 and 2025 giving them an age at cutoff of 0 to 25 years old. After sampling, we might give them a cutoff date of 2003 and consequently an age of 3. 

A bug in sampling

However, somebody born in 2022 can have a maximum age of 3 after sampling. Consequently, we have a situation where the 25-year old born in 2000 can contribute to the 3-year old bucket after sampling, but the 3-year old born in 2022 cannot contribute to the 25-year old bucket. Hence, you get far more 3-year olds than are really in the data.

Saturday, May 31, 2025

Iceberg and Kafka Connect

I've been looking at Iceberg ticket 11818 "Iceberg Kafka Connector experiences a constant hanging lag for low-volume topics".

Quick background: Kafka Connect is part of the Kafka project is a framework for "getting data from an application into Kafka or getting data out of Kafka into an
external application." [Kafka Streams in Action, Manning]

Kafka Connect

I'm trying to get my head around Iceberg code that uses Kafka Connect.

SinkTask is the class that must be implemented and put is the method that receives a Collection of SinkRecords.

This SO answer describing the relationship between connectors and tasks was informative:
"A task is a thread that performs the actual sourcing or sinking of data.  
The number of tasks per connector is determined by the implementation of the connector...  
For sink connectors, the number of tasks should be equal to the number of partitions of the topic.  The task distribution among workers is determined by task rebalance which is a very similar process to Kafka consumer group rebalance."

Iceberg and Kafka Connect

Iceberg's Kafka Connect implementation can be configured to create the table if it does not exist. In the Integration*Test classes, you can see the Kafka Connect is configured such that iceberg.tables.route-field (TABLES_ROUTE_FIELD_PROP) is payload, which is a field in our test's TestEvent objects, messages that are serialized to JSON and sent to Kafka.

The first message will create a RecordWriter. If the IcebergWriterFactory is so configured, it will first create the table to which the RecordWriter will write.

Inspecting Kafka

When running kafka-consumer-groups.sh you can see CURRENT-OFFSET (the offset of the next record the consumer is to read) and LOG-END-OFFSET (the offset of the next record a producer is to write). The LAG is the difference between the two.

Seems that if receivedPartitionCount >= expectedPartitionCount is not true (see CommitState.isCommitReady), Coordinator.receive will not commit and set CommitState.currentCommitId to null. This means a StartCommit is never sent. 

Incidentally, I asked on the Iceberg Slack channel what the rationale was behind this but received no replies after 4 days.

This results in the Kafka Connect logging:

[2025-05-27 09:24:22,527] INFO Commit d9f18c4a-5253-4c55-8cce-b3a077bbf3c9 initiated (org.apache.iceberg.connect.channel.Coordinator)

so the commit is initiated but:

[2025-05-27 09:24:23,950] INFO Commit d9f18c4a-5253-4c55-8cce-b3a077bbf3c9 not ready, received responses for 1 of 2 partitions, waiting for more (org.apache.iceberg.connect.channel.CommitState)

Evidently, receivedPartitionCount is 1 and expectedPartitionCount is 2 (see below).

The problem

The line here in CommitState.isCommitReady:

if (receivedPartitionCount >= expectedPartitionCount) {

will lead to isCommitReady returning false if this inequality does not hold. Before we look at the values, let's first see how the leader is chosen.

Follow my leader

The algorithm to elect the leader is this:
"there should only be one task assigned partition 0 of the first topic, so elect that one the leader" [Commiter in Iceberg code]. 
It does this by taking "the list of partitions that are now assigned to the [Sink] task " [Kafka SinkTask] when it is opened. It then compares this to the members of the consumer group corresponding its ID we have. We call Kafka [docs] directly to get this.

expectedPartitionCount

The "list of the members of the consumer group" [Kafka ConsumerGroupDescription.members] becomes CommitterImpl.membersWhenWorkerIsCoordinator iff the lowest partition ID in for the members happens to be one of the list of partitions we've been given to coordinate via SinkTask.open (see the leadership election logic, above).

That is, if we're the leader, all those partitions are ours.

The Iceberg Coordinator is instantiated with this list and its totalPartitionCount is calculated as the sum of all the partitions for its members. 

Great, this is exactly the same as expectedPartitionCount in the code snippet above.

receivedPartitionCount

We take the batch of DataComplete objects the CommitState has been buffering. A DataComplete is a "control event payload for events sent by a worker that indicates it has finished sending all data for a commit request."

We sum the assignments for each Payload.

These assignments are from "the current set of assigned TopicPartitions for this task" [Kafka SinkTaskContext docs], that is, the worker that created the DataComplete objects. 

Note that it will "include all assigned topic partitions even if no messages were read" [Iceberg Worker code].

This sum of all these partitions for the messages with our currentCommitId is what we're after.

The problem here is we have a topic with 2 partitions and 2 tasks so each task has a single partition. Therefore, receivedPartitionCount = 1.

The Solution

If the tasks.max for this IcebergSinkConnector is 2, then the partitions will be shared and this inequality does not hold for a single message. But if it's set to 1, the single SinkConnector will deal with all partitions.

This leads to this log line:

[2025-05-27 11:41:21,712] INFO Commit 8dfe1850-d8b6-4054-9d0c-52a782a1d9e4 ready, received responses for all 2 partitions (org.apache.iceberg.connect.channel.CommitState)

Evidently, receivedPartitionCount = 2 and expectedPartitionCount <= 2. 

Saturday, May 17, 2025

DevOps lessons from Polaris and Iceberg

The Apache Iceberg and Polaris code bases make pretty good reading. There's some nice DevOps work here. Here are a few tidbits.

Iceberg's Kafka Connectors

As part of Iceberg's integration tests, Docker compose is used to fire up a Kafka Connect container. Interestingly, this container mounts the directory holding Iceberg's artifacts so it instantly has the latest implementation of Iceberg's Kafka Connect's SinkConnector and SinkTask. The test suite then starts the connector with a REST call (that's the nature of Kafka Connect) that contains all of the connector's config.

This docker-compose.yml also starts a MinIO container so Kafka Connects thinks it's writing to an AWS S3 bucket - all of this in on one self-contained laptop, no config required. (It uses TestContainers to do the heavy lifting of talking to the Docker daemon).

TestContainers has a very cool trick for cleaning up the containers when the tests are finished. It starts a sidecar called Ryuk that listens on a port connected to the JVM and kills the containers when that connection closes. You can see it while the tests are running with:

$ docker ps
CONTAINER ID   IMAGE                                 COMMAND                  CREATED         STATUS                            PORTS                                                           NAMES
...
f7c69b891330   testcontainers/ryuk:0.11.0            "/bin/ryuk"              5 seconds ago   Up 5 seconds                      0.0.0.0:32772->8080/tcp, :::32772->8080/tcp                     testcontainers-ryuk-3c88ed17-ec3d-4ce9-8830-dbbc1ca86294

Kind - K8s lite

You can run Polaris in a Kind cluster. Kind is Kubernetes in Docker. Although it is not CNCF compliant itself, it runs a CNCF compliant version of Kubernetes, just inside Docker containers. So, although it is not appropriate for a multi-node environment, Kind is great for development on a single machine.

Kind starts two Docker containers (kind-control-plane and kind-registry) as well as updating your ~/.kube/config file. If you ./run.sh in the Polaris codebase, you will see it start Kubernetes pods like etcdcore-dns and kube-proxy as well as a polaris container.

Metadata file

Iceberg creates a file called iceberg-build.properties when it's built. Having your project do this can be enormously useful when you've ssh-ed into a box and wondering exactly what version is running there because it's a test environment and nobody has keeping tracking of what is deployed where (ie, the real world). 

Iceberg is built with Gradle so uses the com.gorylenko.gradle-git-properties plugin but there appears to be an equivalent for Maven (git-commit-id-plugin).

Quarkus

Polaris has become heavily dependent on Quarkus. The Docker container just runs quarkus-run.jar. This Jar's main class is io.quarkus.bootstrap.runner.QuarkusEntryPoint. This loads /deployments/quarkus/quarkus-application.dat, a binary file that loads all the Polaris guff. Apparently, it's a binary file to minimise start up times.

The Docker image's entrypoint is /opt/jboss/container/java/run/run-java.sh. This script comes FROM the Dockerfile's Quarkus-friendly base image and contains sensible JVM defaults.

Wednesday, May 14, 2025

Interpreting XGBoost models

Playing with XGBoost at the moment. Here are some basic notes:

Scikitlearn's XGBoost Classifier

This takes a lot of parameters but the highlights are:

Also called eta, the learning_rate is similar to neural nets in that a smaller value means to slower but potentially better performance during training.

At what value of minimum loss before splitting a leaf is called gamma. A higher value means a more conservative model.

You can define the loss function with eval_metric. A value of logloss for instance will penalize confidently wrong predictions.

The fraction of the training data used per tree is the subsample argument and the scale_pos_weight weights the positive classes (useful for imbalanced data).

Random Stratified Data

Talking of imbalanced data, if there are two classes, A and B, and the number of data points for A is small, a random sample may randomly have a disproportionate number of As. To address this, we separate the A and B data points and take the exact number from each such that the ratio overall fits the real world.

For instance, if the ratio of A to B is 1:100 and we want a sample of 1000 points, using Random Stratified Data will give us precisely 10 As. Whereas a random sample could (feasibly) give us none.

Notes on the Confusion Matrix

High precision and low recall indicates a model that really wants to be sure it doesn't have too many false positives.

F1 scores are good for checking imbalanced data or false positives and negatives are of the same value. It's domain specific but a value of about 0.6 is a minium for being acceptable.

Specificity is how well a binary classifier spots false negatives. It's between 0 and 1 and higher is better. Sensitivity is the equivalent for false positives.

The Bayes factor is the ratio of the probability of getting this data given a hypothesis is true versus the null hypothesis, that is P(D|H1)/P(D|H0).

When less (data) is more

In survival analysis, you might want to employ a technique called temporaral censoring analysis. This applies to time-to-event data, the subject of survival analysis. The idea is that you censor data to minimise a fundamental problem: a person who yet to be diagnosed with a disease (for example) is classed the same as somebody who will never have it.

A similar approach is used to tackle Simpson's Paradox where the model behaves differently in aggregate than when the data is segmented. Here, we segment the data and evaluate the model on those cohorts only. These techniques are called cohort-based validation or segmented model evaluation depending on how you slice and dice the data.

Calibration

If you were to plot the probabilities of your model (from 0 to 1) against the actual fraction it of class A vs class B at that probability, you'd have a calibration curve. There are a few variants on the methodology (eg, Platt Scaling that treats this as a logisitic regression) but the simpler one is an isotonic method. This sorts your probabilities in ascending order while calculating the cumumlative total of class As monotonically isotonically increasing step function.

A line that hugs the diagonal indicates a well calibrated model.

Wednesday, April 16, 2025

Kafka in Kubernetes

If you ask Strimzi to set up a Kafka cluster out of the box, you'll see this when connecting:

$ kafka-topics.sh --bootstrap-server 10.152.183.163:9092 --list
...
[2025-04-04 16:35:59,464] WARN [AdminClient clientId=adminclient-1] Error connecting to node my-cluster-dual-role-0.my-cluster-kafka-brokers.kafka.svc:9092 (id: 0 rack: null) (org.apache.kafka.clients.NetworkClient)
java.net.UnknownHostException: my-cluster-dual-role-0.my-cluster-kafka-brokers.kafka.svc
...

Where that IP address comes from:

$ kubectl get service -A
NAMESPACE     NAME                                  TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)                                        AGE...
kafka         my-cluster-kafka-bootstrap            ClusterIP   10.152.183.163   <none>        9091/TCP,9092/TCP,9093/TCP                     21d

It appears that Strimzi does not expose external Kafka ports by default. So, add an external port with:

kubectl get kafka my-cluster -n kafka -o yaml > /tmp/kafka.yaml

then edit /tmp/kafka.yaml adding:

    - name: external
      port: 32092
      tls: false
      type: nodeport

in the spec/kafka/listeners block and apply it with:

kubectl apply -n kafka -f /tmp/kafka.yaml

Now I can see:

$ kubectl get svc -n kafka
NAME                                  TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)                                        AGE   SELECTOR
...
my-cluster-kafka-bootstrap            ClusterIP   10.152.183.163   <none>        9091/TCP,9092/TCP,9093/TCP                     21d
my-cluster-kafka-external-bootstrap   NodePort    10.152.183.27    <none>        32092:32039/TCP                                11d

It appears that Strimzi has created a new service for us - hurrah! 

However, making a call to Kafka still fails. And this is because of the very architecture of Kubernetes. I am indeed communicating with a Kafka broker within Kubernetes but then it's forwarding me to another domain name, my-cluster-dual-role-0.my-cluster-kafka-brokers.kafka.svc. The host knows nothing about this Kubernetes domain name. Incidentally, the same happens in Kafka for a pure Docker configuration.

Kubernetes pods resolve their domain names using the internal DNS.

$ kubectl exec -it my-cluster-dual-role-1 -n kafka -- cat /etc/resolv.conf
Defaulted container "kafka" out of: kafka, kafka-init (init)
search kafka.svc.cluster.local svc.cluster.local cluster.local home
nameserver 10.152.183.10
options ndots:5

This nameserver is kube-dns (I'm using Microk8s):

$ kubectl get svc -n kube-system
NAME       TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                  AGE
kube-dns   ClusterIP   10.152.183.10   <none>        53/UDP,53/TCP,9153/TCP   21d

and we can query it from the host:

$ nslookup my-cluster-dual-role-external-0.kafka.svc.cluster.local 10.152.183.10
Server: 10.152.183.10
Address: 10.152.183.10#53

Name: my-cluster-dual-role-external-0.kafka.svc.cluster.local
Address: 10.152.183.17

Now, to get the host to use the Kubernetes DNS for K8s domain names, I had to:

$ sudo apt update
$ sudo apt install dnsmasq
$ sudo vi /etc/dnsmasq.d/k8s.conf

This was a new file and needed:

# Don't clash with systemd-resolved which listens on loopback address 127.0.0.53:
listen-address=127.0.0.1
bind-interfaces
# Rewrite .svc to .svc.cluster.local
address=/.svc/10.152.183.10
server=/svc.cluster.local/10.152.183.10

That listen-address line was because sudo ss -ulpn | grep :53 showed both dnsmasq and systemd-resolved were fighting over the same port.

I also had to add:

[Resolve]
DNS=127.0.0.1
FallbackDNS=8.8.8.8
Domains=~svc.cluster.local

to /etc/systemd/resolved.conf to tell it to defer to dnsMasq first for domains ending with svc.cluster.local. Finally, restarting 

$ sudo systemctl restart systemd-resolved
$ sudo ln -sf /run/systemd/resolve/resolv.conf /etc/resolv.conf
$ sudo systemctl restart dnsmasq

Now let's use that external port we configured at the top of the post:

$ kubectl get svc -n kafka
NAME                                  TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)                                        AGE
...
my-cluster-kafka-external-bootstrap   NodePort    10.152.183.27    <none>        32092:32039/TCP          
$ ./kafka-topics.sh --bootstrap-server 10.152.183.27:32092 --create --topic my-new-topic  --partitions 3  --replication-factor 2
Created topic my-new-topic.
$ ./kafka-topics.sh --bootstrap-server 10.152.183.27:32092 --list
my-new-topic

Banzai!